top of page

PUBLICATIONS

"Theory is when you know everything, but nothing works.

Practice is when everything works, but no one knows why.

In our lab, theory and practice are combined:

nothing works and no one knows why."

PRL_Cover2023.jpg

Activity-driven lipid bilayer separation into liquid ordered and disordered phases. Time-lapse images of driven actin filaments on the bilayer (magenta, top). Liquid ordered domains growing in time, left to right (green, bottom).

Arnold DP (co-first), Gubbala A (co-first), Takatori SC.

Active surface flows accelerate the coarsening of lipid membrane domains. Phys Rev Lett. 2023; 131, 128402. [Link]

cover_design_2.jpg
d3sm00673e_Page_01.jpg

Xu Y (co-first), Choi KH (co-first), Nagella SG, Takatori SC. Dynamic interfaces for contact-time control of colloidal interactions. Soft Matter, 2023; 19, 5692. [Link]

Submitted:

Takatori SC^, Quah T, Rawlings JB^. Feedback control of active matter. Annual Reviews of Condensed Matter Physics. (^ co-corresponding)

Quah T, Rawlings JB^, Takatori SC^. Model predictive control of active Brownian particles. (^ co-corresponding)

Arnold, Takatori. Lipid membrane domains control actin network viscoelasticity. [Link]

Cheon J (co-first), Choi KH (co-first), Modica KJ, Mitchell RJ, Takatori SC^, Jeong J^. Motility modulates the partitioning of bacteria in aqueous two-phase systems. [Link (^ co-corresponding)

31. Xu Y, Jandhyala P, Takatori SC. Dynamic surfactants drive anisotropic colloidal assembly. J. Chem. Phys., 161, 064901, 2024. DOI: 10.1063/5.0220112. [Link​]

30. Gubbala A*, Arnold DP*, Jena A, Anujarerat S, Takatori SC. Dynamic swarms regulate the morphology and distribution of soft membrane domains, Phys Rev E, 110, 014410, 2024. DOI: 10.1103/PhysRevE.110.014410. (* equal contribution) [Link[video abstract]

29. Barakat JM*, Modica K*, Lu L, Anujarerat S, Choi KH, Takatori SC. Surface topography induces and orients nematic swarms of active filaments: considerations for lab-on-a-chip devices, ACS Applied Nano Materials, 2024. DOI: 10.1021/acsanm.4c02020. (* equal contribution) [Link]

28. Quah T, Takatori SC^, Rawlings JB^. Neural network augmented model predictive control: Application to active Brownian particles. American Control Conference, IEEE (peer-reviewed)2024.  ( ^ co-corresponding ) [video abstract]

27. Modica KJ, Takatori SC. Soft confinement of self-propelled rods: simulation and theory. Soft Matter, 2024, DOI: 10.1039/D3SM01340E [Link] [video abstract]

26. Xu Y, Takatori SC. Nonequilibrium interactions between multi-scale colloids regulate the suspension microstructure and rheology. Soft Matter, 2023, 19, 8531 - 8541. DOI: 10.1039/D3SM00947E [Link] [video abstract]

25. Arnold DP*, Gubbala A*, Takatori SC. Active surface flows accelerate the coarsening of lipid membrane domains. Phys Rev Lett. 2023; 131, 128402(* equal contribution) [Link] [video abstract]

24. Nagella SG, Takatori SC. Colloidal transport phenomena in dynamic, pulsating porous materials. AIChE Journal. 2023; 69(12):e18215. Invited in AIChE Journal Futures Issue, and highlighted as Feature in Chemical Engineering Progress (CEP). 10.1002/aic.18215. [Link, CEP link] [video abstract]

23. Xu Y*, Choi KH*, Nagella SG, Takatori SC. Dynamic interfaces for contact-time control of colloidal interactionsSoft Matter, 2023, DOI: 10.1039/D3SM00673E. (* equal contribution) [Link] [video abstract]

22. Arnold DP, Takatori SC. Bio-enabled engineering of multifunctional "living" surfaces. ACS Nano, 2023, 17, 11077−11086. [Link]

21. Arnold DP, Xu Y, Takatori SC. Antibody binding reports spatial heterogeneities in cell membrane organization. Nature Commun, 2023, 14: 2884. [Link]

20. Takatori SC*^, Son S*^, Lee D, Fletcher DA^. Engineered molecular sensors for quantifying cell surface crowding. Proc Nat Acad Sci, 2023, 120 (21) e2219778120. (* equal contribution; ^ co-corresponding authors) [Link]

19. Modica KJ, Omar A, Takatori SC. Boundary design regulates the diffusion of active matter in heterogeneous environments. Soft Matter, Soft Matter Emerging Investigators Series, 2023. [Link] [video abstract]

18. Barakat JM, Takatori SC. Enhanced dispersion in an oscillating array of harmonic traps. Phys Rev E. 2023. (co-corresponding authors) [Link

17. Modica KJ, Xi Y, Takatori SC. Porous media micro-structure determines the diffusion of active matter: experiments and simulations. Frontiers in Physics. 2022. [Link] [video abstract]

 

16. Takatori SC, Mandadapu K. Motility-induced buckling and glassy

dynamics regulate three-dimensional transitions of bacterial monolayers.

2020. [Link] [video abstract]

 

 

15. Son S, Takatori SC, Belardi B, Podolski M, Bakalar M, Fletcher DA.

Molecular height measurement by cell surface optical profilometry (CSOP).

Proc Nat Acad Sci.  2020. [Link]

14. Takatori SC^, Sahu A^.  Active contact forces drive non-equilibrium

fluctuations in membrane vesicles. Phys Rev Lett. 2020; 124, 158102.

(^ co-corresponding authors) [Link[video abstract]

 

 

 

Before 2017 (Caltech)

​​​​​​​​​​​​

13. Takatori SC, Brady JF.  Inertial effects on the stress generation of active fluids.  Phys Rev Fluids. 2017; 2, 094305. [Link, PDF]

 

12. Takatori SC, Brady JF.  Superfluid behavior of active suspensions from diffusive stretching.  Phys Rev Lett. 2017; 118, 018003. [Link, PDF]

 

11. Takatori SC*, De Dier R*, Vermant J, Brady JF.  Acoustic trapping of active matter. Nat Commun.  2016; 7:10694.  (* equal contribution) [Link, PDF]

 

10. Takatori SC, Brady JF.  Forces, stresses and the (thermo?)dynamics of active matter. Curr Opin Colloid Interface Sci.  2016; 21, 24. [Link, PDF]

 

9. Takatori SC, Brady JF.  A theory for the phase behavior of mixtures of active particles. Soft Matter.  2015; 11, 7920. [Link, PDF]

 

8. Takatori SC, Brady JF.  Towards a thermodynamics of active matter. Phys Rev E.  2015; 91, 032117. [Link, PDF]

 

7. Takatori SC, Brady JF.  Swim stress, motion, and deformation of active matter: effect of an external field.  Soft Matter.  2014; 10, 9433-9445. [Link, PDF]

 

6. Takatori SC, Yan W, Brady JF.  Swim pressure: stress generation in active matter.  Phys Rev Lett.  2014; 113, 028103. [Link, PDF]

Before 2013 (UC Berkeley)

5. Takatori SC, Lazon de la Jara P, Holden B, Ehrmann K, Ho A, Radke CJ.  In-vivo corneal oxygen uptake during soft-contact-lens wear.  Invest Ophthalmol Vis Sci. 2013; 54, 3472. [Link, PDF]

4. Takatori SC, Lazon de la Jara P, Holden B, Ehrmann K, Ho A, Radke CJ.  Author Response: In Vivo Oxygen Uptake into the Human Cornea.  Invest Ophthalmol Vis Sci, 2012; 53: 6829. [Link]

 

3. Takatori SC, Lazon de la Jara P, Holden B, Ehrmann K, Ho A, Radke CJ.  In vivo oxygen uptake into the human cornea.  Invest Ophthalmol Vis Sci. 2012; 53, 6331. [Link, PDF]

 

2. Takatori SC, Radke CJ. A quasi-2-dimensional model for respiration of the cornea with soft contact lens wear. Cornea. 2012; 31, 405. [Link, PDF]

1. Ryan W, Takatori SC, Booze T, Kang H-Y. Toward safe and sustainable nanomaterials: Chemical Information Call-in to manufacturers of nanomaterials by California as a case study. The European Journal of Law and Technology. 2011; 2: 1-11. [Link]

Previous_work.jpg
Previous_work2.jpg
F2_edited.jpg
bottom of page